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theories which are conjectured to be duals of free gauge theories. We focus on the ex-

tremal correlators 〈Tr(ZJ1(x))Tr(ZJ2(y))Tr(ZJ3(z))Tr(Z̄J(0)))〉 of N = 4 SYM theory,

and construct the corresponding worldsheet correlators in the limit when the Ji ≫ 1. The

worldsheet correlator gets contributions, in this limit, from a whole family of Feynman

graphs. We find that it is supported on a curve in the moduli space parametrized by the

worldsheet crossratio. In a further limit of the spacetime correlators we find this curve to

be the unit circle. In this case, we also check that the entire worldsheet correlator displays

the appropriate crossing symmetry. The non-renormalization of the extremal correlators

in the ’t Hooft coupling offers a potential window for a comparison of these results with

those from strong coupling.
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1. Introduction

Since the seminal work of ’t Hooft [1] it has been hoped that a general gauge theory can

be reinterpreted as a string theory with the string coupling gs proportional to the inverse

of the rank of the gauge group. For instance, in the case of SU(N), gs ∼ 1/N . When

the gauge theory has a large amount of supersymmetry and is nearly conformal there is a

plausible candidate dual in terms of conventional type IIB superstrings propagating on a

ten dimensional target space. When the gauge theory is strongly coupled this target space

is a geometrical background which is asymptotically of the form AdS5 ×X, where X is an

appropriate five dimensional Sasaki-Einstein manifold. The simplest member of this class

being of course AdS5 × S5 describing N = 4 SYM theory [2].

On the other hand when the gauge theory is weakly coupled, the dual string theory

is complicated and need not have a simple geometric interpretation. In this paper we will

pursue a particular proposal [3 – 6] to construct the worldsheet correlators of such string

theories. This proposal is based on a direct map from the Feynman graphs to the worldsheet

moduli, so that one can rewrite (a whole family of) Feynman integrals as an integral over

the appropriate closed string moduli space, i.e. the moduli space of Riemann surfaces

with punctures. The essential ingredient in this mapping involves expressing the Feynman

amplitude in Schwinger parametrized form and mapping the Schwinger parameters to the

Strebel parametrisation of the closed string moduli space. We will briefly review the salient

features of this proposal in what follows.

– 1 –
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Various properties of the correlators obtained by this mapping have been studied in [7 –

15]. Since the first non-trivial instance of closed string moduli arise for the four point

functions, much of the focus has been on studying particular gauge theory four point

functions in the free limit. In this context a natural class of correlators to examine are

those which are independent of the ’thooft coupling. The ”extremal correlators” in N = 4

SYM are an instance where the supersymmetry protects the value of these correlators from

any renormalisation [16, 17]. We will therefore examine four point correlators such as

〈Tr(ZJ1(x))Tr(ZJ2(y))Tr(ZJ3(z))Tr(Z̄J(0)))〉, with J = J1 + J2 + J3 (Here Z is one of the

three complex scalars and using translation invariance we have put the point of insertion of

one of the operators at the origin). The gauge theory spacetime correlators are related by

the AdS/CFT correspondence to string theory worldsheet correlators, integrated over the

appropriate moduli space, in this case parametrized by the worldsheet cross ratio. If the

former do not receive corrections from their free field value, it is interesting to see whether

whether the latter do. It could very well be that any coupling dependence can only be

given by a total differential on moduli space which would be a BRST trivial addition to

the correlator. In which case the results obtained from any prescription for obtaining the

worldsheet answer at zero coupling could be extrapolated to strong coupling and perhaps

be compared with a semiclassical worldsheet computation. Note that the Tr(ZJ) are chiral

primary operators of N = 4 SYM theory and in the dual string theory correspond to KK

modes on S5 with angular momentum J .

With this motivation, we will study the planar Feynman diagrams in the free theory

which contribute to the above four point extremal correlator. Up to homotopy there are

only two classes of diagrams we have to take care of, which we will denote by the Y and

the lollipop (see figure 1). While the Y diagram is unique, there is a family of lollipop

diagrams, since there are two homotopically inequivalent edges joining a pair of vertices

and each member of the family is distinguished by the number of lines glued together in

each edge. We will henceforth only draw these skeleton graphs in which homotopically

inequivalent edges have been glued together.

The worldsheet correlator for the Y diagram has been evaluated earlier [7, 8]. It was

found [8] that the worldsheet correlator was a rational function of the crossratio, displayed

crossing symmetry and also had an integral power series expansion, all properties required

of a correlator in a local CFT. Moreover, the answer was essentially built from Ising model

correlators. Thus to obtain the entire planar contribution to the worldsheet extremal

correlator, we only need to evaluate the lollipop diagrams. However, it appears not to be

feasible to solve the lollipop contribution for the most general case, i.e for general values of

J1, J2, J3. We will study the case where the Ji ≫ 1.1 The advantage of taking this limit is

that we can use a novel saddle point method in the integral over moduli space [9], to obtain

the dominant contribution to the correlator. In the dual string theory this limit corresponds

to the semiclassical scattering of high energy KK modes in the gravity multiplet.

We therefore use the saddle point method to find the contribution of the worldsheet

correlator from the whole family of lollipop diagrams. This saddle point contribution is

1Note that this is different from the BMN limit where the mass dimension J is scaled together with N .

– 2 –



J
H
E
P
1
0
(
2
0
0
8
)
0
2
9

21

3

4

1

2

3

4

J1 J2

J3

m J1 −m

J2

J3

1 2

3

4

1

2

3

4

Figure 1: Here we have shown how we obtain the Y and lollipop skeleton graphs after gluing all

the homotopic edges between each pair of vertices. We have suppressed the doubled line notation

but these should be thought of as planar doubled lined graphs with homotopic edges glued together.

Note we have a family of lollipop graphs, each being distinguished by m, which tells us the number of

homotopic edges being glued on each of the inequivalent edges joining vertices 1 and 4. The vertex

1 corresponds to the operator insertion Tr(ZJ1) at x, vertex 2 to the insertion of Tr(ZJ2) at y,

vertex 3 to the insertion of Tr(ZJ3) at z and finally vertex 4 to the insertion of Tr(Z̄J ) at the origin.

exact in our limit of infinite mass dimensions of the operators with their ratios kept fixed.

Several novel features emerge from our analysis. We find that each lollipop diagram gets a

contribution supported on a specfic point in the moduli space, i.e for a specific value of the

cross ratio. The contributions from the entire family of diagrams then span out a curve

in the moduli space. The curve itself parametrically depends on two combinations of the

ratios of the positions as well as the Ji. We may contrast this feature with high energy

string scattering in flat space as analyzed by Gross and Mende earlier [18, 19]. Here, it

was found that the contribution came from a single point in the moduli space or from a

specific value of the cross ratio. We implicitly find this curve and its contribution to the

worldsheet correlator for any value of the two independent variables. However we can write

down an explicit answer when both the variables take the value one, which is the case when

x2/J1 = y2/J2 = z2/J3, In this case we find that our saddle line (on which the worldsheet

correlator is supported) is the unit circle. We also find that our world sheet correlator is a

rational function of the crossratio.
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Another interesting feature of the worldsheet correlator in this limit has to do with the

way crossing symmetry is manifested. Crossing symmetry has been a useful consistency

check of the worldsheet theory and has played an important role in the case of the Y

diagram [8]. Crossing symmetry is expected since the lollipop graph is invariant under

simultaneous interchange of vertices 2 and 3 and the operators amounting to simultaneous

interchange of y, z and J2, J3 (see fig 1). So we expect that the functional dependence of the

worldsheet correlator on the cross ratio should also not change aside from an appropriate

weight factor under the transformation of the crossratio which exchanges the point of

insertion of vertices 2 and 3 on the worldsheet keeping the other vertices fixed along with

the simultaneous exchange of y, z and J2, J3. We find that this is indeed the case for the

explicit example which we have evaluated. The interesting feature is that we need to sum up

the contributions from the whole family of lollipop diagrams to see this crossing symmetry.

This paper is organised as follows. In section 2, after briefly recapitulating the proposal

of [3 – 6] we go onto study the Strebel differential needed to map the Schwinger parameters

of the lollipop graph to the worldsheet crossratio. In section 3 we take the large Ji limit.

We find, after summing the contributions of these diagrams, the support of the correlator

to lie on a curve in the moduli space. In section 4 we find the explicit answer for the

further special case and we explicitly check crossing symmetry. Finally we conclude with

some discussions on the implications of our work for high energy string scattering in AdS.

2. The lollipop diagram

In this section we introduce the lollipop diagram and write down the equations which

determine the map from the space of Schwinger parameters of the lollipop to the moduli

space of the four punctured sphere. In the course of doing this we will review the precise

formulation [3 – 6] of this map.

2.1 The prescription for the Strebel differential

From figure 1 we see that the lollipop diagram contributes to the planar part of the four

point extremal correlator

< Tr(ZJ1(x))Tr(ZJ2(y))Tr(ZJ3(z))Tr(Z̄J(0))) >, (2.1)

where J = J1 + J2 + J3. To make the discussion self contained we review the proposal [3 –

6], of constructing the worldsheet correlator from the Schwinger parameterization of the

corresponding field theory diagram focussing on the correlator in (2.1) as the example. The

proposal of [3 – 6] involves four steps:

(i) Gluing homotopic edges.

We first simplify the planar2 Feynman graph by gluing homotopic edges to a skeleton

graph. Two edges joining a pair of vertices are said to be homotopic if they could be

2Here we focus on only the planar part of the Feynman graph, but the proposal of [3 – 6] can be imple-

mented on any genus g Feynman graph.
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made to coincide with the same orientation without any obstruction on the sphere.

Mathematically the gluing procedure means that for all the K homotopic edges join-

ing a pair of vertices we use a single effective Schwinger parameter employing the

simple identity
∫

dσσK−1exp(−σx2) ∼ 1/(x2)K .

For the extremal correlator in (2.1), the only allowed Wick contractions are between

Z and Z̄. Therefore the only edges of the Feynman graph are those between the

origin at which the operator Tr(Z̄J) is located and the points x, y and z at which

the operators Tr(Z̄J1), Tr(Z̄J2), Tr(Z̄J3) are located respectively (see figure 1). As

mentioned in the introduction we see that there are two kinds of diagrams, the Y

and the lollipop. Furthermore, from figure 1, we see that there is in fact a family of

lollipop diagrams, each member distinguished by the number of contractions between

the vertices at 1 and 4. On one of the edges there are m and in the other we have

J1−m contractions since the total number of contractions between x at which vertex

1 is located and the origin at which vertex 4 is located is J1. The vertices 2 and 3 are

at y and z respectively and for all diagrams we have J2 and J3 contractions with the

origin respectively. From this discussion it is clear that the Y is a special case of the

lollipop diagram with m = 0, or J1. We can always permute x, y and z to produce

inequivalent graphs, though in some cases the result of permutation would reproduce

the original graph. We will discuss the effect of permutations in some detail in section

4.1. The left hand side diagrams in figure 1 are the corresponding skeleton graphs of

the Y and the lollipop diagrams.

The Schwinger parameter representation of the whole family of lollipop graphs after

all the contractions have been performed is given by

J1−1
∑

m=1

1

(J1 −m− 1)!(m− 1)!(J2 − 1)!(J3 − 1)!

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
dσ

′

1dσ
′′

1dσ2dσ3

×σ
′m−1
1 σ

′′J1−m−1
1 σJ2−1

2 σJ3−1
3 e−(σ

′

1
+σ

′′

1
)x2−σ2y2−σ3z2

. (2.2)

When m=0 (or equivalently m = J1) the above Schwinger parameterization reduces

to that of the Y diagram.

(ii) The skeleton graph and the critical graph of a Strebel differential.

Strebel differentials are special quadratic differentials φ(z)dz2 whose only poles are

double poles and are such that the invariant line element
√

φ(z)dz is real on finitely

few trajectories. These trajectories are called horizontal trajectories and they connect

the zeroes of the Strebel differential. We use Strebel differentials because we can

specify a Strebel differential uniquely in two ways, one by specifying the critical graph

and the other by specifying the punctured genus g surface (i.e a point inMg,n) along

with the residues at the poles (which are a set of n nonnegative numbers specifying

a point in Rn
+). So we see that it provides the natural tool for mapping the space
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Figure 2: The dual of the lollipop graph is shown above in dotted lines. The lollipop has two

faces, so the dual graph has two vertices. We find that each of these vertices have valence four,

which means that the corresponding Strebel differential will have two double zeroes.

of graphs to the decorated moduli space of punctured Reimann surfacesMg,n×Rn
+.

The proposal of [3 – 6] is to identify the dual of the field theory graph (the lollipop)

with the critical graph of an appropriate Strebel differential. The Y graph has been

already studied in [7, 8], we therefore focus on the lollipop graphs. The dual of the

lollipop graph is constructed in figure 2, we find that it has two vertices, of valence

four each and has a bead like structure.

We now have to identify the dual of the lollipop to the critical graph of the appropriate

Strebel differential. For this it is useful to study more general four vertex graphs

on the sphere and their corresponding Strebel differentials. This will also give us

the opportunity to recall the properties of Strebel differentials. The skeleton graph

corresponding to a general four vertex graph will have six edges. For the Lollipop,

one such graph can be obtained from the by adding two edges as in figure 3. Since

the graph is actually on a sphere, it provides a triangulation of the sphere and we

refer to it as a pyramidal tetrahedron. This graph is shown in figure 3 and its dual

has been shown in 4. We will show below that we can map this tetrahedron to a cell

in the moduli space of the Riemann sphere with four punctures. All such tetrahedra

together will provide a cellular decomposition of the moduli space. Now the dual of

each such tetrahedron is identified with the the critical graph of the most general

Strebel differential on the sphere with four double poles, this differential is given by

φ(z)dz2 = −C
(z2 − 1)(z2k2 − 1)

(z − z1)2(z − z2)2(z − z3)2(z − z4)2
dz2. (2.3)

– 6 –
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Figure 3: The maximal completion of the lollipop graph with six edges is shown above. Note if

we add any extra edge it would be homotopic to a pre-existing one.

Figure 4: The dual of the maximally connected graph in figure 3.

Here we briefly summarize its properties:

(a) The four double poles correspond to the four vertices of the skeleton graph and

will be identified with closed string vertex operator insertions. Each face of the

critical graph associated with this differential encloses the double poles of this

differential.

(b) In (2.3) we have used SL(2, C) transformations to bring the four single zeros

at 1,−1, 1/k and −1/k. The vertices of the critical graph are the zeros of the

differential (2.3), with a vertex of valence m+2 associated with a zero of order m.

Therefore each of the four vertices of the critical graph of the differential (2.3)

has 3 edges.

(c) On the critical graph, the line element
√

φ(z)dz is real everywhere. There are

six edges in the critical graph for generic values of the twelve real parameters

(which are the six complex numbers C, k, z1, z2, z3, z4).

It appears from property 3, we need 12 real parameters to specify the Strebel dif-

ferential, but we now show that we just need 6. Let us first fix the residues of the

four poles to be p1, p2, p3, p4. These are real by property 3, thus fixing the residues

gives us eight real equations, we can also choose them to be positive by choosing the

directions of the contours. Now the sum of the edges in every face is the residue of

– 7 –
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the pole inside therefore we have 6− 4 = 2 independent edges. The lengths of these

edges is real by property 3 which implies that the imaginary parts of the integrals
√

φ(z)dz along the edges vanish. This gives us us two more conditions from the 2

independent lengths, hence we have ten conditions in all. So the initial twelve pa-

rameters get constrained by ten conditions therefore we actually have two real or one

complex parameter left in the end, which we can choose to be the cross ratio η of the

location of the four poles (z1, z2, z3, z4). Strebel’s theorem says that corresponding to

six real parameters (p1, p2, p3, p4, η) we have a unique quadratic differential satisfying

all the above properties. The crucial point is that the number of edges of the original

graph equals the number of parameters characterizing a Strebel differential. Thus

specifying the length of the dual edges which we refer as Strebel lengths amounts to

picking a point in the decorated moduli space of a Riemann sphere with four punc-

tures, which specifies the cross ratio and the four real and nonnegative residues at

the double poles. To obtain the Strebel differential for the lolipop note that the dual

of the lollipop has 2 vertices each of valency 4. This implies that the corresponding

Strebel differential has 2 zeros each of order 2. Thus, the Strebel differential for the

lollipop is given by

φ(z)dz2 = −C
z2

(z − z1)2(z − z2)2(z − z3)2(z − z4)2
dz2. (2.4)

It is clear that the above differential has a double zero at the origin, but by applying

the transformation z → 1/z it is easy to verify that the differential also has a zero at

∞. In the next section we will describe how to obtain the above differential from the

most Strebel differential, for the four punctured sphere in (2.3), using a scaling limit.

Note that there is another graph with four edges and two vertices each of of valency

four, hence described by the same Strebel differential. However what distinguishes

the lollipop is that the sum of the residues of the three poles equals that of the fourth

pole. This relation between the poles can be easily seen from fig 2. In this paper, we

will always impose this relation between the residues of the poles to choose the region

of the decorated moduli space which corresponds to the lollipop graph. For the sake

of completeness we have drawn the other graph which is referred as the whale and

its dual in figure 5.

(iii) Mapping Schwinger parameters to the moduli of the four punctured sphere.

This is the key step of the proposal [3 – 6]. Let, the Strebel length of the edge of the

critical graph of the Strebel differential, running between the i-th and j-th zeroes be

lij. This is a function of the p’s and the crossratio η. This length is identified with

the Schwinger parameter of the dual edge in the field theory graph, which we will

call σij and is given by

σij = lij(p1, p2, p3, p4, η).

If the graph is not maximally complete the p’s and the crossratio would not be inde-

pendent of each other. However by Strebel’s theorem this map would always specify

the Strebel differential and hence a point in the decorated moduli space uniquely.

– 8 –
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Whale
Whale’s dual

Figure 5: The whale graph and its dual are shown above. We have either the dual graph of the

whale or that of the lollipop as the critical graph of a Strebel differential, depending on the values

of the residues of the poles.

We use this map to make a change of variables of the Schwinger integrand from σij

to the moduli {p1, p2, p3, p4, η}.
We now discuss the relations between the Strebel lengths for the lollipop. From the

figure 2, it is clear that we have the following relation between the residues at the

four poles.

p4 = p1 + p2 + p3. (2.5)

Let σ′
1, σ

′′
1 , σ2, σ3 be the Strebel lengths as defined in the figure 2. We then have the

following relations:

σ
′

1 + σ
′′

1 = p1, (2.6)

σ2 = p2,

σ3 = p3.

From the above relations, we see that the lollipop has only one independent Strebel

length which we will choose to be b = σ
′

1. Since the Strebel length b is real, it

provides a single real condition on the Strebel differential in (2.4). Including the 8 real

conditions determining the residues of the poles we have totally 9 conditions. Out of

the 10 real parameters {C, z1, z2, z3, z4} in (2.4) determining the Strebel differential

for the lollipop, it is sufficient to specify the 4 real parameters. These are the 3

independent residues, say p1, p2, p3 and one more real parameter. We can choose the

parameters as p2/p1, p3/p1, η, where η is the cross ratio of the location of the four

poles. Note that the number of parameters equals the number of edges, therefore

specifying the Strebel lengths amounts to choosing a point in the moduli space of the

Riemann sphere with four punctures.

(iv) Integrating the residues.

The final step in of the proposal [3 – 6] is to integrate the independent residues and

identity the integrand as the putative world sheet correlator. For the lollipop di-

agram, after the change of variables from the Schwinger parameters to the ratios

– 9 –
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p2/p1, p3/p2, η, we have to integrate over the variables p2/p1, p3/p2 to obtain an in-

tegrand which depends only on η. Thus we are left with
∫

dηdη̄G(η, η̄).

We then identify G(η, η̄) as the candidate world sheet correlaor.

2.2 The Strebel differential for the lollipop

In this subsection we write down the equations which determine the map from the Schwinger

parameters to the moduli of the four punctured sphere. To do this we will first solve the

independent parameters of the Strebel differential (2.4), which are two of the four residues

of the double poles and the complex crossratio η in terms of the lengths of the four edges

of the critical graph. The four edges of the critical graph are now identified with the

Schwinger parameters of the dual edges.

As stated in the previous section it would be useful to begin with the most general

Strebel differential whose critical graph (figure 4) is maximally complete with six edges.

We will then take an appropriate scaling limit that would take us to the special case of

the lollipop graph. We follow the approach developed in [8]. First we map the general

Strebel differential (2.3) to an auxiliary torus with complex coordinate u. In the u plane

the doubly periodic properties of the the differential
√

φ(z)dz are more manifest. This

torus has periods (2ω1, 2ω2)) which are functions of the moduls k. The explicit map (from

z → u(z)) is given by:

u(z) =

∫ z

1

dz
√

(z2 − 1)(z2k2 − 1)
. (2.7)

Upto a constant shift this is defining relation for the Jacobi elliptic function sn(u) of

modulus k. We have the relation

z = sn
(

u +
ω1

2

)

=
cn(u)

dn(u)
. (2.8)

In the u-plane the invariant line element is given by

√

φ(z)dz = −i
√

C(1− k2)2
sn2(u)

Π4
i=1(cn(u)− zidn(u))

du. (2.9)

Note that in the u-plane we have no branch cuts therefore the invariant line element is

single valued in the u-plane. This line element has double zeroes at 0, ω1, ω2, ω1 + ω2. It

has single poles at zi = cn(ui)/dn(ui), it can be shown [8] that the residues at these poles

ri satisfy the following equations

4
∑

i=1

ri

sn(ui)
= 0, (2.10)

4
∑

i=1

risn(ui) = 0,

4
∑

i=1

ri
cn(ui)dn(ui)

sn(ui)
= 0.

– 10 –
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Here zi = cn(ui)/dn(ui). In principle the equations (2.10) determine three of the four ui in

terms of the fourth, say u1 as well as the perimeters ri. to determine u0 we need to know the

two Strebel lengths. The main reason to go to the u-plane is that it enables us to carry out

the Strebel integrals between the zeros. The two independent lengths can be taken to be

a =

∫ ω1

0

√

φ(u)du, and b = −
∫ ω2

0

√

φ(u)du. (2.11)

After performing these integrals we obtain [8]

a =
∑

i

ri [π − 2i(ζ(ui)ω1 − ζ(ω1)ui)] , (2.12)

b =
∑

i

ri [π + 2i(ζ(ui)ω2 − ζ(ω2)ui)] .

where ζ(u) is related to the Weierstrass ℘ function by3

dζ

dz
= −℘(z). (2.13)

By taking linear combinations of the equations in (2.12) and using the properties of these

functions we obtain

π
∑

i

riui = (πω1 + πω2)
∑

i

ri − aω2 − bω1. (2.14)

We now need to take a scaling limit of the most general Strebel differential for the

four punctured sphere given in (2.3) so as to obtain the Strebel differential for the lollipop

given in (2.4). This scaling limit is given by

z → z′/ǫ, zi → z′i/ǫ, (2.15)

k → k′ǫ1+α, with ǫ→ 0.

where 1 > α > 0, Note that z′, z′i, k
′ are held fixed. Under this scaling the zeros of the

Strebel differential are pushed to ±ǫ,±1/ǫ2α. Therefore in the limit we see that the general

Strebel differential in (2.3) coincides with that of the lollipop (2.4). We now examine how

the equations (2.10) behave under this scaling. From (2.8) we can obtain the following

expansions under the scaling (2.15)

snu = i
z′

ǫ

(

1 +
1

2
k′2ǫ2αz′2 + · · ·

)

, (2.16)

1

snu
= −i

ǫ

z

(

1− 1

2
k′2ǫ2αz′2 + · · ·

)

,

cnudnu

snu
= i

(

1 +
1

2
k′2ǫ2αz′2 + · · ·

)

.

3Please refer [8] for a discussion on the properties of these functions.
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To perform this expansion we have used 0 < 2α < 1, the · · · refer to higher powers of ǫ.

Substituting these equations in (2.10), the leading order equations are given by

∑ ri

zi
= 0,

∑

rizi = 0,
∑

ri = 0. (2.17)

We now have to take the scaling limit in the equations determining the Strebel lengths

(2.12), (2.14). We will first look at the equations determining a. It can be shown that

under the scaling limit in (2.15)

iu = ln

(

2z′

ǫ

)

+
z′

4
ǫ2α, (2.18)

ζ(u) = − i

12
ln

(

2z′

ǫ

)

+
1

2
+ O(ǫ2α),

ζ(ω1) =
π

12
+ O(ǫ2α),

ω1 = π + O(ǫ2α).

Substituting the leading terms of these expansions for the equation for a in (2.12) and

using the last equation of (2.17) we obtain that a = 0 to O(ǫ2α). To obtain the equation

for b it is convenient to look at (2.14). Again substituting the leading terms of (2.18) and

using a = 0 we obtain

∑

i

ri ln(zi) = ib, or zr1

1 zr2

2 zr3

3 zr4

4 = eib. (2.19)

Here again we have used the last equation in (2.17). We now further simply the equations

(2.17) and (2.19). We can eliminate r4 from the equations by r4 = −r1 − r2 − r3. Let us

also define

s2 =
r2

r1
, s3 =

r3

r1
, s =

b

r1
, (2.20)

and

v1 =
z1

z4
, v2 =

z1

z4
, v3 =

z3

z4
. (2.21)

Then the equations (2.17) and (2.19) reduce to

v1 + s2v2 + s3v3 = s2 + s3 + 1, (2.22)
1

v1
+

s2

v2
+

s3

v3
= s2 + s3 + 1,

v1v
s2

2 vs3

3 = eis.

The crossratio is:

η =
(z2 − z4)(z3 − z1)

(z3 − z4)(z2 − z1)
=

(v2 − 1)(v3 − v1)

(v3 − 1)(v2 − v1)
. (2.23)

Now using the relations (2.6) between the Strebel lengths and the Schwinger parameters

we have

s =
σ

′

1

σ1
, s2 =

σ2

σ1
, s3 =

σ3

σ1
. (2.24)

where σ1 = σ
′

1 + σ
′′

1 .
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Thus the overall scale is indeed unimportant for the map. The stategy is to take

s2, s3 and the crossratio η as the independent variables parameterising our Strebel differ-

ential (2.4) or equivalently the decorated worldsheet moduli space. We will see later that

this choice is good both for obtaining the high energy behaviour of the worldsheet corre-

lator and also for demonstrating crossing symmetry. So from the three equations of (2.22)

we first solve v1, v2, v3 as functions of s2, s3, s. We then substitute this in the expression

for η in (2.23) and invert s as a function of s2, s3, η. This would complete our job of solving

the map from the Schwinger parameters to the variables of choice in the decorated moduli

space of four punctured Riemann surface, which are now s2, s3 and η.

2.3 An exactly solvable point of the lollipop

The equations in (2.22) are transcendental and it is not possible to obtain exact solutions

for all values of s2, s3, s. However when s2 = s3 = 1 we show the equations can indeed be

solved explicitly. Substituting these values in (2.22) we obtain

v1 + v2 + v3 = −3, (2.25)

1

v1
+

1

v2
+

1

v3
= −3,

v1v2v3 = eis.

In other words v1, v2, v3 are the three roots of the cubic equation

v3 − 3v2 + 3eisv − eis = 0.

We will show that the right choice of the roots is given by:

v1 = ω2A + ωB + 1, v2 = A + B + 1, (2.26)

v3 = ωA + ω2B + 1, where A = β1/3(1 +
√

1− β)1/3,

B = β1/3(1−
√

1− β)1/3, and β = 1− eis.

Here ω refers to the cube root of unity. With this choice of v’s we obtain the crossratio

using (2.23)

η = ηo(s) = −ω
1− B2

A2

1− ω2 B2

A2

, where
B2

A2
= ω− 1

2

(

tan
(s

4

))
2

3

. (2.27)

Note that when s is set to zero, η becomes −ω. This justifies the choice of roots in (2.26):

because when s vanishes the lollipop graph reduces to Y graph. In fact, the exactly solvable

point of the lollipop diagram reduces to the the Y diagram with three equal edges when

s = 0. When evaluating the world sheet correlator corresponding to the extremal operators

there is a contribution from the Y graph when the the number of contractions in (2.2))

is either m = 0 or m = J1. It is necessary to have a continuous and uniform definition

of the η into order to compare and add the contribution from the Y diagrams. From [8],

we see that when all the lengths of the Y diagram are equal, the crossratio reduces to

η = −ω. The choice of the roots in (2.26) ensures that the crossratio in (2.27) also reduces

to η = −ω when s = 0.
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3. The large J limit

We have seen in the previous section the change of variables required to obtain the world

sheet correlator for the lollipop diagram involves a transcedental equation. It is therefore

difficult to obtain the worldsheet correlator for the general diagram. In [9] it was observed

that correlators with large J charges simplify. It was shown that the Schwinger parametric

representation of the correlator localizes at certain values of the Schwinger parameters. In

this section we study the lollipop in the limit J1, J2, J3,→∞ with their mutual ratios held

fixed. In this limit, the general analysis in [9] shows that the contribution to the integrand

localises at certain values of the Schwinger parameters.

3.1 Schwinger parametrization in the large J limit

In the previous section we have noticed that we can always take an overall scale of the

Strebel differential out before we perform the change of variables to the decorated world-

sheet moduli space. We chose σ1 = σ
′

1 + σ
′′

1 in (2.24) to be the overall scale. Recasting the

Schwinger parametric representation in terms of the scaled residues s, s2 and s3 as specified

in equation (2.24) we obtain

J1−1
∑

m=1

(J − 1)!

(J1 −m− 1)!(m − 1)!(J2 − 1)!(J3 − 1)!

∫ 1

0

∫ ∞

0

∫ ∞

0
dsds2ds3

× sm−1(1− s)J1−m−1sJ2−1
2 sJ3−1

3

(x2 + s2y2 + s3z2)J1+J2+J3

. (3.1)

In principle we should have mapped each member of the family of lollipop contributions,

denoted by m, to the worldsheet moduli space for each m separately. But, the change of

variables depends just on the topology of the graph and not on the number of lines glued

at each edge, therefore not on m. Hence we can the sum over m first and then perform the

further change of variables which would eventually include the crossratio of the location of

the four poles of the Strebel differential. The sum over m gives:

(J − 1)!

(J1 − 2)!(J2 − 1)!(J3 − 1)!

∫ 1

0
ds

∫ ∞

0
ds2

∫ ∞

0
ds3

sJ2−1
2 sJ3−1

3

(x2 + s2y2 + s3z2)J
, (3.2)

where J = J1 + J2 + J3. It is sufficient to focus on the integral to discuss the change of

variables, therefore for the present we ignore the normalization in (3.2). To simplify the

discussion we scale out d2 = x2 + y2 + z2 from the denominator. Define a, b, c such that,

x2/d2 = a, y2/d2 = b, z2/d2 = c. Then the integral becomes

∫ 1

0
ds

∫ ∞

0
ds2

∫ ∞

0
ds3

sJ2−1
2 sJ3−1

3

(a + s2b + s3c)J
. (3.3)

It will be also convenient to introduce α = (J1−2)/J, β = (J2−1)/J, γ = (J3−1)/J . In the

limit of large J, with α, β, γ held fixed, the saddle point value for s2 is J2a/J1b, the saddle

point for s3 is J3a/J1c. Note that s is a flat direction since the integrand is independent
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of this variable. We can now expand the integrand about the saddle point. Let us write

s2 = J2a/J1b+ǫ2 and s3 = J3a/J1c+ǫ3. Substituting this in the integrand (3.3) we obtain:

exp

[

−J

(

ln(J) + α ln
( a

α

)

+ β ln

(

b

β

)

+ γ ln

(

c

γ

)

(3.4)

+ ln

(

1 +
bα

a
ǫ2 +

cα

a
ǫ3

)

− β ln

(

1 +
bα

aβ
ǫ2

)

− γ ln

(

1 +
cα

aγ
ǫ3

))]

.

Keeping only upto quadratic terms in the exponent we have:

exp

[

−J

(

ln(J) + α ln
( a

α

)

+ β ln

(

b

β

)

+ γ ln

(

c

γ

)

(3.5)

−b2α2

2a2

1− β

β
ǫ2
2 −

c2α2

2a2

1− γ

γ
ǫ2
3 −

bcα2

a2
ǫ2ǫ3

)]

.

There are no linear terms in ǫ2 and ǫ3 since we are expanding about a saddle point. Now in

the large J limit the Gaussian fluctuations could be interpreted as delta functions. With

the understanding that we are going to do away with ǫ3 integral first, we can write the

expression in (3.5) more compactly as

e
−J

h

ln(J)+α ln( a
α

)+β ln( b
β
)+γ ln( c

γ
)
i(

2π

J

)(

a2
√

βγ

bcα
5

2

)

δ(ǫ2)δ(ǫ3). (3.6)

Now we note that in all the intermediate stages of manipulations the whole expression

has retained symmetry under simultaneous exchange between β, b and γ, c. This is the

reflection of the fact that the lollipop graph as a double line planar graph has a symmetry

under exchange of vertices 2 and 3 (see figure 2).

Aside from a multiplying constant the whole expression is just the integral
∫

ds

∫

dǫ2

∫

dǫ3δ(ǫ2)δ(ǫ3).

We need to convert this to an integral over η, η̄ , the coordinates which parameterize the

moduli space of four punctured Reimann sphere and ǫ3. We then have to integrate ǫ3 out

to obtain the world sheet correlator, this last integration is trivial due to the delta function.

3.2 The world sheet correlator in the large J limit

To obtain the world sheet correlator we we have to solve equations (2.22) and (2.23) and ob-

tain v1, v2, v3 as functions of s, s2, s3. In the large J limit it is sufficient to solve these equa-

tions around the saddle line, i.e, s2, s3, around their saddle point values (βa)/(αb), (γa)/(αc)

respectively and the flat direction s parametrising the saddle line. As in the previous sub-

section, we write s2 = (βa)/(αb) + ǫ2, s3 = (γa)/(αc) + ǫ3. In terms of ǫ2 and ǫ3 the

solutions to (2.22) can be expanded perturbatively as:

v1 = v10(s) + ǫ2v11(s) + ǫ3v12(s) + . . . .., (3.7)

v2 = v20(s) + ǫ2v21(s) + ǫ3v22(s) + . . . ..,

v3 = v30(s) + ǫ2v31(s) + ǫ3v32(s) + . . . ...
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Substituting these expansions in (2.23) to obtain η , we get:

η = ηo(s) + M(s)ǫ2 + N(s)ǫ3. (3.8)

In general M(s) and N(s) are complicated functions, but we will see that we will not need

their explicit forms to obtain the world sheet correlator.

We have seen that up to some factors which will be reinstated later the field theory

integrand is given by:
∫

ds

∫

dǫ2

∫

dǫ3δ(ǫ2)δ(ǫ3).

We now have to change variables from s, ǫ2, ǫ3 to η, η̄, ǫ3 and then integrate out ǫ3. In the

large J limit we can write down the following change of variables:

η = ηo(s) + M(s)ǫ2 + N(s)ǫ3, (3.9)

η̄ = η̄o(s) + M̄(s)ǫ2 + N̄(s)ǫ3,

ǫ3 = ǫ3.

With the understanding that we are integrating out ǫ3 first we can work out the change

of variables for the case ǫ3 ∼ 0 because of the presence of δ(ǫ3). Note that we also have

δ(ǫ2) in the expression for the world sheet correlator. Therefore, when we obtain the the

Jacobian for s, ǫ2 to η, η̄ we can set ǫ2 to zero as well. Now we will think of iδ(ǫ2) as a

’primary function’ of η̄. This means while doing the integration, we must perform the η̄

integral first.4 To do this we have to write the Jacobian as a function of η only. It is easy

to see that:

∂(s, ǫ2)

∂(η, η̄)

∣

∣

∣

∣

ǫ2=ǫ3=0

=
1

M(η−1
o (η))η̄′

o(η
−1
o (η))− M̄(η−1

o (η))η′

o(η
−1
o (η))

. (3.10)

Now, converting δ(ǫ2) term, with ǫ3 = 0 we can write:

δ(ǫ2) = δ

(

η̄ − η̄o(s(η, η̄))

M̄(s(η, η̄))

)

. (3.11)

Note in converting this delta function we cannot write s as η−1
o (η) like we have done for

the Jacobian since ǫ3 = 0 only outside the Jacobian. However we can still put ǫ3 to zero

and then eliminate ǫ2 from (3.9) to obtain:

η̄ − η̄o(s))

M̄(s)
=

η − ηo(s)

M(s)
. (3.12)

We now use above expression to write s as a function of η, η̄. Alternatively, we can also

Taylor expand s(η, η̄) in η̄ about η̄ = η̄o(η
−1
o (η)) which happens when ǫ2 = 0. TheTaylor

expansion is given by:

s(η, η̄) = η−1
o (η) + (η̄ − η̄o(η

−1
o (η)))

∂s(η, η̄)

∂η̄

∣

∣

∣

∣

η̄=η̄o(η−1
o (η))

+ . . . ... (3.13)

4If we have a delta function of many variables we need to interpret this distribution as a primary function

of one of the variables which we must integrate first. For example, the familiar δ(p2) is a function of four

variables, namely the four momenta (E, p), but we can regard it as a primary function of the energy E.

Therefore we write δ(p2) as (δ(E − |p|) + δ(E + |p|))/2|p|.
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We calculate the first derivative (∂s(η, η̄))/(∂η̄) when η̄ = η̄0(η
−1
0 (η)) using (3.12), the

defining expression for s. We take the derivative on both sides of (3.12) and retain only

terms which don’t vanish when ǫ2 = 0. This means we can drop derivatives of M and M̄ .

Thus we obtain:

∂s(η, η̄)

∂η̄
|η̄=η̄o(η−1

o (η)) =
M(η−1

o (η))

M(η−1
o (η))η̄′

o(η
−1
o (η)) − M̄(η−1

o (η))η′

o(η
−1
o (η))

. (3.14)

Now to finish the required conversion of δ(ǫ2) to a primary function of η̄, we see that

δ

(

η̄ − η̄o(s(η, η̄))

M̄(s(η, η̄))

)

= δ(η̄ − η̄o(η
−1
o (η)))

M̄(η−1
o (η))

1 − η̄′

o(η
−1
o (η)) ∂s(η,η̄)

∂η̄

∣

∣

∣

η̄=η̄o(η−1
o (η))

. (3.15)

Note we have dropped the derivative of M̄ since this is zero when the argument of the

delta function vanishes. Now we substitute ∂s(η,η̄)
∂η̄ from (3.14) in (3.15) and obtain:

δ(ǫ2) = δ

(

η̄ − η̄o(s(η, η̄))

M̄(s(η, η̄))

)

, (3.16)

= δ(η̄ − η̄o(η
−1
o (η)))

M(η−1
o (η))η̄′

o(η
−1
o (η))− M̄(η−1

o (η))η
′

o(η
−1
o (η))

η
′

o(η
−1
o (η))

.

Now combining (3.16) above with the Jacobian (3.10) we get a remarkably simple answer:

∫

ds

∫

dǫ2

∫

dǫ3δ(ǫ2)δ(ǫ3) =

∫

dη

∫

dη̄

∫

dǫ3
δ(η̄ − η̄o(η

−1
o (η)))δ(ǫ3)

η
′

o(η
−1
o (η))

. (3.17)

Now we can integrate ǫ3 out and claim that our correlator is:

G(η, η̄) ∼ δ(η̄ − η̄o(η
−1
o (η)))

η
′

o(η
−1
o (η))

(const). (3.18)

This is a very simple answer which could have been expected before performing the detailed

calculation. Note the η̄ integral gives 1 and dη/(η
′

o(η
−1
o (η))) is simply equal to ds. The

delta function plays the role of localizing the correlator on the saddle line.

If we reinstate the constant in (3.18) we get:

(J − 1)!

(J1 − 2)!(J2 − 1)!(J3 − 1)!
e
−J

h

ln(J)+α ln( a
α

)+β ln( b
β
)+γ ln( c

γ
)
”(

2π

J

)(

a2
√

βγ

bcα
5

2

)

. (3.19)

Using Sterling’s approximation we can expand the prefactor in the above expression to

obtain:

e−J [α ln(a)+β ln(b)+γ ln(c)]

(

2π

J

)(

a2
√

βγ

bcα
5

2

)

. (3.20)

Implicitly (3.18) is the general answer for the world sheet correlator, though we do not

know the function η−1
o (η) and its derivative explicitly. Note that we have derived the

above expression after we have inserted the operators at the vertices of the lollipop graph

in a definite order. We have taken a specfic case where the spacetime point x has been

mapped to the vertex 1 of the lollipop as in figure 2. If we had inserted the operator at y at
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the vertex 1 of the lollipop graph, we would have had an inequivalent situation. We need to

consider this case also, since this graph does contribute to the spacetime correlator as well.

The worldsheet correlator corresponding to this graph can be easily obtained by performing

the required permutation in (3.18). This in general is a different function. On the other

hand permuting vertices 2 and 3 as has been pointed out earlier results in the same graph,

so we could readily include the contribution by including an appropriate symmetry factor

in the constant (3.20). However, we do have a further non-trivial consistency check of

crossing symmetry. We will address this issue in the next section.

To conclude, we see that at large J the world sheet correlator gets its only non-trivial

contribution from the Jacobian s→ η, the map being given by the solutions of eqs. (2.22)

and (2.23) for fixed saddle point values of s2 and s3. We emphasize here that this result

is obtained only after we sum over the contributions from the whole family of lollipop

diagrams. Since the contribution comes only from the Jacobian, we see that in this limit,

the worldsheet correlator is somewhat universal. For instance apart from symmetry fac-

tors we would have obtained the same answer from a different integrand such as that of a

matrix model.

4. Worldsheet correlator for the exactly solvable point

Implicitly, the world sheet correlator for the lollipop diagram is given by (3.18) in the large

J limit. To obtain the correlator explicitly we need to choose x2, y2, z2 and J1, J2, J3 such

that the zeroth order equations in (3.7) are solvable. However the saddle line depends

only on two independent combinations of these variables, as the saddle line is fixed by

saddle point values of s2 and s3 which are βa/αb and γa/αc respectively. In other words

the saddle line depends on the ratios of distances times the ratios of the R-charges of the

operators such that there are just two independent parameters.

We have seen that the equations (2.22) can be explictly solved for s2 = s3 = 1. In the

large J limit, it can be seen these values of s2, s3 are obtained by setting

x2/J1 = y2/J2 = z2/J3.

The cross ratio as a function of s is given by (2.23):

η = ηo(s) = −ω
1− B2

A2

1− ω2 B2

A2

,
B2

A2
= ω− 1

2

(

tan
(s

4

))
2

3

. (4.1)

To evaluate the world sheet correlator we need to determine η̄o(η
−1
o (η))) and η

′

o(η
−1
o (η)).

To do this we would not need to actually evaluate the function η−1
o . We collect the following

simple facts:
B2

A2
=

η + ω

ηω2 + ω
, (4.2)

and
B̄2

Ā2
=

1

ω

B2

A2
. (4.3)
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The above equation follows from the second explicit expression in (4.1). Combining (4.2)

and (4.3) we obtain:
η̄ + ω2

η̄ω + ω2
=

η + ω

η + ω2
. (4.4)

Solving the above we get ηη̄ = 1. Thus the “saddle line” is just the unit circle, furthermore:

η̄o(η
−1
o (η))) =

1

η
. (4.5)

Again using the second explicit expression in (4.1) we can calculate:

∂

∂s

(

B2

A2

)

=

(

B2

A2

)− 1

2

(

ω
−3

4

6

)[

1−
(

B2

A2

)3
]

, (4.6)

∂ηo(s)

∂s
=

ω − 1
(

1− ω2 B2

A2

)2

∂

∂s

(

B2

A2

)

.

Finally using (4.1), (4.2) and (4.6) we obtain:

η
′

o(η
−1
o (η)) =

1

6

ω− 3

4 (ω − 1)
(

1− ω2 η+ω
ηω2+ω

)2

(

η + ω

ηω2 + ω

)− 1

2

[

1−
(

η + ω

ηω2 + ω

)3
]

. (4.7)

Therefore the final explicit expression for our worldsheet correlator is:

G(η, η̄) ∼ δ

(

η̄ − 1

η

)

6(ω − 1)ω
3

4 (ηω2 + ω)−
5

2 (η + ω)
1

2

1

1−
(

η+ω
ηω2+ω

)3 . (4.8)

We observe that the worldsheet correlator in this case is a rational function of η. The

constant of proportionality in (4.8) could be obtained as a special case of (3.20)

e−J [α ln(α)+β ln(β)+γ ln(γ)]

(

2π

J
√

αβγ

)

. (4.9)

This constant will be important when we add the contributions of the Y correlator. The

other lollipop contributions from the inequivalent graphs are obtained from the permuta-

tions of the vertices. In this limit, the constant remains the same. It seems for this special

case we have an accidental permutation symmetry among α, β, γ.

4.1 Crossing symmetry

Now we will check if the world sheet correlator in (4.8) exhibits crossing symmetry. This is

indeed a non-trivial check of the proposal for construction of worldsheet correlators. This

check was performed for the Y diagram in [8]. We will do the same here for the lollipop

and show that the world sheet correlator in (4.8) exhibits crossing symmetry. On drawing

the lollipop on the sphere it is clear the graph has the property that the edge connecting

the second and fourth vertices and that connecting the third and the fourth vertices are

equivalent. Therefore this equivalence should be reflected in the worldsheet correlator also.

– 19 –



J
H
E
P
1
0
(
2
0
0
8
)
0
2
9

The world sheet correlator in the large J limit is localised on a line in the complex

plane and so we should look only for those SL(2, C) transformations which keep the line

invariant. Let f(z) be the conformal tranformation which maps the saddle line to the real

line. The stabilizer of the real line is SL(2, R). Then the desired subgroup of SL(2, C)

which keeps our saddle line invariant is the conjugation f−1 · SL(2, R) · f .

To verify crossing symmetry we need to find the SL(2, C) transformation that inter-

changes v2 and v3 and then check if this is part of the subgroup of SL(2, C) which stabilizes

our saddle line. The transformation is η → 1/η. Indeed, since the saddle line is the unit

circle, this transformation does stabilise it.

More explicitly, let us examine the effects of the transformation η ← 1/η on two parts

of (4.8) individually. Firstly let us look at the delta function part. It transforms to the

expression below:

δ

(

1

η̄
− η

)

= −η̄2δ(η̄ − 1

η
). (4.10)

Here we have rewritten the delta function by thinking of it as a “primary” function of η̄, i.e.

we are going to integrate it out first. The remaining part of the correlator (4.8) is given by:

f(η) = 6(ω − 1)ω
3

4 (ηω2 + ω)−
5

2 (η + ω)
1

2

1

1−
(

η+ω
ηω2+ω

)3 . (4.11)

It is straightforward to verify that:

f

(

1

η

)

= −η2f(η). (4.12)

To complete the check we need to see Finally it is easy to see that the multiplicative con-

stant in (4.9) is also invariant under simultaneous exchange of b, c and J2, J3. Therefore,

from (4.10) and (4.11) we obtain

Gy,J2;z,J3

(

1

η
,
1

η̄

)

= |η|4Gz,J3;y,J2(η, η̄). (4.13)

Thus the world sheet correlator indeed has crossing symmetry.

Generically, we also have other inequivalent contributions, for instance when we ex-

change vertices 1 and 2. These would not be related to each other by crossing symmetry.

These inequivalent contributions would have support from different saddle lines because

they would not be stabilised under the SL(2, C) transformations which would implement

the permutations. Hence the whole worldsheet correlator gets support from these complete

set of saddle lines obtained from all the inequivalent lollipop graphs.

5. Discussion

We have observed in section 3, that in the limit of large J (with ratios fixed), the planar

worldsheet four point correlator coming from the lollipop graphs, gets its non-trivial con-

tribution only from the Jacobian of the change of variables from the Schwinger parameters

to the worldsheet moduli space. The integrand contributes just through its value at the

– 20 –



J
H
E
P
1
0
(
2
0
0
8
)
0
2
9

saddle point of the set of variables on which it depends. This happens, however, very

non-trivially, only when we sum over a whole family of diagrams. Since in this limit the

integrand doesn’t contribute, there is a measure of universality to the answer. For instance

the worldsheet correlator would have been the same had the integrand been that of a matrix

model. It would be interesting to understand the significance of this a bit better.

Since by the operator state correspondence in AdS/CFT, the large Ji limit is dual to

highly massive Kaluza-Klein states in the dual string theory. We have also taken the large

N limit so that we need consider only classical string theory. If it is indeed the case that

the world sheet correlators of these extremal four point functions are not renormalized with

’t Hooft coupling, then we could try and compare these correlators with answers at large ’t

Hooft coupling. It would be nice to see if a geometric approach to the scattering of these

states in the large radius AdS could show the signature of the above localisation onto a

curve in the moduli space.
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